
This Project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No.

873087. Neither the European Commission nor any person acting on behalf of the Commission is responsible for how the following

information is used. The views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect the

views of the European Commission.

 D3.3 SHOP4CF Architecture 2

Grant Agreement No. 873087

Project Name
Smart Human Oriented Platform for

Connected Factories (SHOP4CF)

Work Package No. WP3

Lead Beneficiary PSNC

Delivery Date 31/12/2021

Author(s) Michał Zimniewicz (PSNC)

Contributor(s)

Zuzanna Domagała-Schmidt (TUE), Paul

Grefen (TUE), Konstantinos Traganos (TUE),

Matteo Pantano (SAG), Adam Olszewski

(PSNC), Genessis Perez (FZI), Pieter Becue

(IMEC), Diego Francisco Carvajal Flores

(UPM)

Editor(s) Michał Zimniewicz (PSNC)

Reviewer(s)

Pieter Becue (IMEC), Blazej Banaszewski

(DTI), Raphael Prabucki (UO), Aske Bach

Lassen (DTI)

Nature Report

Dissemination Level Public

 D3.3 SHOP4CF Architecture

License notice

This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA

4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/

Document Revision History

Version Date Modification Reason Modified by

0.1 18/12/2020 Initial version of the deliverable Michał Zimniewicz (PSNC)

0.2 12/01/2021 Internal review Blazej Banaszewski (DTI)

0.3 14/01/2021 Internal review Raphael Prabucki (UO)

1.0 19/01/2021 Final version of the deliverable Michał Zimniewicz (PSNC)

1.1 06/12/2021 Initial version of Deliverable D3.3

Changes summarized in Section 1.3

Michał Zimniewicz (PSNC)

1.2 09/12/2021 Internal review Aske Bach Lassen (DTI)

1.3 13/12/2021 Internal review Raphael Prabucki (UO)

2.0 20/12/2021 Final version of the deliverable Michał Zimniewicz (PSNC)

https://creativecommons.org/licenses/by-nc-sa/4.0/

 D3.3 SHOP4CF Architecture

- 1 -

Abbreviations

AGV Automated guided vehicle

IDS International Data Spaces

IoT Internet of Things

K4+1 The Kruchten 4+1 architecture framework

MES Manufacturing execution system

PCB Printed circuit board

ROS Robot Operating System

SQL Structured Query Language

UML Unified Modeling Language

UT5 The Updated Truijens 5 Aspect Framework

WoT Web of Things

WPx Work package no. x of the SHOP4CF project

In addition, the acronyms of SHOP4CF components are listed in Section 5.

 D3.3 SHOP4CF Architecture

- 2 -

Executive Summary

This document presents the SHOP4CF framework architecture that aims at ensuring coherence and

interoperability of the SHOP4CF software components under development. This framework

architecture (reference architecture) provides a common template for concrete systems under design.

Requirements for the SHOP4CF architecture are defined by the pilot scenarios from the prior project

deliverables and by the existing SHOP4CF components. Therefore, top-down (scenarios) and bottom-

up (components) approaches to the architecture design were combined. In addition, the architecture

conforms to the reference architectures: ISA-95, RAMI 4.0, FIWARE Smart Industry, and International

Data Spaces, as well as to the architectures of prior research projects.

Methodology of undertaken design decisions as well as how they are organized and presented in this

document are all based on established architectural standards and frameworks. The SHOP4CF

architecture focuses mainly on the logical view of the Kruchten 4+1 architecture framework that

provides a structure and specifies functionality of abstract modules. The document addresses not only

software but also the platform and data aspects, as defined in the Updated Truijens 5 aspect framework.

A high-level logical view on the software aspect is designed as a set of six subsystems supporting

manufacturing processes in three phases (design, execute, analyze) and at two levels (global, local).

Coherence of the components is addressed by positioning of components within these subsystems and

organizing connections between them.

Interoperability of the components is addressed with logical views on the platform and data aspects that

together facilitate and standardize communication among the components. Separately, interoperability

of the architecture with existing standards is discussed.

Logical views on the platform aspect define the organization of software and hardware that are

necessary to deliver high-level functionalities. They focus mainly on the FIWARE middleware, and on

how middleware components support connections among software components and with IoT.

Logical views on the data aspect ensure the uniform structure and meaning of data items exchanged by

various modules as well as conformity to existing standards. This data architecture maps to relevant

parts of the software and platform architectures to emphasize cross-dependencies between these aspects.

In addition, the document highlights possible areas for further design decisions, such as extending of

functionality or the middleware.

A special focus is put on designing the SHOP4CF architecture as an open architecture to facilitate its

future extensions, even without the involvement of the SHOP4CF consortium.

 D3.3 SHOP4CF Architecture

- 3 -

Table of Contents
Abbreviations .. - 1 -

Executive Summary .. - 2 -

1 Introduction ... - 7 -

1.1 Purpose ... - 7 -

1.2 Target audience .. - 7 -

1.3 Document lifetime .. - 7 -

1.4 Structure of this document ... - 8 -

2 Architectural standards .. - 10 -

2.1 The Updated Truijens 5 Aspect Framework (UT5) ... - 10 -

2.2 The Kruchten 4+1 architecture framework (K4+1).. - 11 -

2.3 Data modeling .. - 12 -

2.4 Architecture specification techniques .. - 12 -

3 Requirements for the Architecture .. - 13 -

3.1 Project resources .. - 13 -

3.1.1 Scenarios .. - 13 -

3.1.2 Component analysis ... - 13 -

3.2 Reference architectures .. - 14 -

3.2.1 ISA-95 ... - 14 -

3.2.2 RAMI 4.0 ... - 14 -

3.2.3 FIWARE Smart Industry ... - 15 -

3.2.4 International Data Spaces .. - 15 -

3.2.5 Architectures of prior research projects ... - 16 -

4 Methodology applied to SHOP4CF ... - 18 -

4.1 The UT5 framework applied to SHOP4CF .. - 18 -

4.2 The K4+1 framework applied to SHOP4CF .. - 18 -

4.3 Data modeling approach applied to SHOP4CF .. - 19 -

5 Overview of SHOP4CF components ... - 20 -

6 High-level logical software architecture .. - 23 -

6.1 Top-level logical software architecture .. - 23 -

6.2 High-level interfaces .. - 24 -

 D3.3 SHOP4CF Architecture

- 4 -

6.3 Positioning of SHOP4CF components ... - 25 -

6.4 Mapping to scenarios ... - 26 -

7 High-level logical platform architecture .. - 27 -

7.1 Top-level logical platform architecture .. - 27 -

7.2 Overview of FIWARE middleware .. - 28 -

7.3 High-level middleware architecture ... - 28 -

7.4 Mapping to software architecture ... - 29 -

8 High-level logical data architecture ... - 31 -

8.1 Top-level logical data architecture ... - 31 -

8.2 Design data models .. - 31 -

8.2.1 Locations ... - 32 -

8.2.2 Work definitions .. - 32 -

8.2.3 Resource Specifications ... - 32 -

8.3 Execution data models ... - 33 -

8.3.1 Resources ... - 33 -

8.3.2 Tasks .. - 34 -

8.3.3 Processes .. - 35 -

8.3.4 Alerts ... - 36 -

8.4 Mapping to middleware architecture .. - 37 -

8.5 Mapping to scenarios and middleware architecture ... - 38 -

8.6 Mapping to the ISA-95 standard .. - 38 -

9 Medium-level logical platform architecture .. - 40 -

9.1 Mapping to software architecture ... - 40 -

9.2 Characteristics of interoperability classes .. - 41 -

9.3 Extensive example of interoperability .. - 42 -

10 Interoperability of the architecture ... - 45 -

10.1 Relation to FIWARE Smart Industry ... - 45 -

10.1.1 Platform aspect .. - 45 -

10.1.2 Software aspect.. - 46 -

10.2 Interoperability with the Robot Operating System (ROS) ... - 47 -

10.3 Interoperability using International Data Spaces ... - 48 -

10.4 Interoperability to other system adapters ... - 48 -

 D3.3 SHOP4CF Architecture

- 5 -

11 Extending the framework ... - 50 -

12 Conclusions .. - 51 -

Bibliography ... - 52 -

Appendix A Interfaces in the high-level logical software architecture - 55 -

Appendix B FIWARE data representation .. - 57 -

B.1. NGSI format ... - 57 -

B.2. Conventions ... - 57 -

B.3. Examples .. - 57 -

Appendix C Pilot questionnaires on MES ... - 58 -

C.1 Survey and results .. - 58 -

C.2 Questionnaire questions ... - 58 -

List of Figures

Figure 1 UT5 aspect framework .. - 10 -

Figure 2 K4+1 view model of software architecture ... - 11 -

Figure 3 Data modeling approach .. - 12 -

Figure 4 FIWARE Smart Industry (source: www.fiware.org) ... - 15 -

Figure 5: IDS architecture (simplified) (source: internationaldataspaces.org) .. - 16 -

Figure 6 Top-level logical software architecture ... - 23 -

Figure 7 High-level logical software architecture with interfaces ... - 24 -

Figure 8 Mapping of SHOP4CF components to the high-level logical software architecture - 25 -

Figure 9 Interoperability among components in the initial pilot scenarios .. - 26 -

Figure 10 Top-level logical platform architecture ... - 27 -

Figure 11 High-level logical middleware architecture .. - 28 -

Figure 12 Mapping of high-level logical software and middleware architectures ... - 29 -

Figure 13 Top-level logical data architecture .. - 31 -

Figure 14 Location data model .. - 32 -

Figure 15 Work definitions data model ... - 32 -

Figure 16 Resource Specification data model ... - 33 -

Figure 17 Resource data model ... - 33 -

 D3.3 SHOP4CF Architecture

- 6 -

Figure 18 Task data model .. - 35 -

Figure 19 Example modeled task (UML object diagram) ... - 35 -

Figure 20 Process data model .. - 36 -

Figure 21 Alert data model .. - 36 -

Figure 22 Interoperability classes of SHOP4CF components.. - 40 -

Figure 23 Platform architecture for context producers .. - 41 -

Figure 24 Platform architecture for context consumers in subscription mode .. - 41 -

Figure 25 Platform architecture for context consumers in query mode ... - 42 -

Figure 26 Platform architecture for historical-context consumers ... - 42 -

Figure 27 Logical architecture of MPMS in Design Global subsystem .. - 43 -

Figure 28 Logical architecture of MPMS in Execute Global subsystem ... - 43 -

Figure 29 Platform architecture of MPMS .. - 44 -

Figure 30 Transformation of FIWARE Smart Industry architecture to the logical view - 45 -

Figure 31 Logical view of FIWARE Smart Industry ... - 45 -

Figure 32 Mapping between the logical middleware architecture and FIWARE Smart Industry - 46 -

Figure 33 Mapping between the logical software architecture and FIWARE Smart Industry - 46 -

Figure 34 Architecture of the system adapter for ROS/ROS2 ... - 48 -

Figure 35 FIWARE TRUE Connector (source: fiware-true-connector.readthedocs.io) - 48 -

Figure 36 FIWARE Consumer-Thing interaction (source: www.w3.org)... - 49 -

Figure 37 High-level logical software architecture with numbered interfaces .. - 55 -

List of Tables

Table 1 List of SHOP4CF components with short descriptions .. - 20 -

Table 2 Lifecycle rules for execution data models in FIWARE .. - 37 -

Table 3 Mapping of data models to specific information from scenarios .. - 38 -

Table 4 Mapping between SHOP4CF and ISA-95 data models .. - 38 -

Table 5 Mapping of SHOP4CF components to interoperability classes .. - 41 -

Table 6 Interfaces in the high-level logical software architecture ... - 55 -

Table 7 High-level results for the pilot questionnaires .. - 58 -

 D3.3 SHOP4CF Architecture

- 7 -

1 Introduction

1.1 Purpose

The SHOP4CF project aims at providing technical means for manufacturing companies to find the right

balance between automation and involvement of human workers. The technical means are based on

functionalities of the SHOP4CF components that facilitate digitalization of factories [1].

This document presents the architecture of the SHOP4CF framework that ensures coherence and

interoperability of the software components that are developed in the project.

Framework architecture (or reference architecture) means that concrete systems that involve a subset

of all components can be designed and deployed based on such architecture. For instance, the SHOP4CF

pilots [1] are specific trimmed views of the entire framework architecture.

Coherence of software components means that they can be positioned with respect to each other in this

framework, so such positioning depicts whether components have similar, complementary or unrelated

functionality. Interoperability means that integration of components that have complementary

functionality is supported by their design that primarily addresses coherence of adopted technology

standards and the interpretation of data to be exchanged.

1.2 Target audience

The main recipients of this document are users (factories), system integrators, and component

developers.

Users (factories) look for the functional overview of SHOP4CF components. To this end, this document

contains logical (functional) views that coherently present the high-level overview of components and

their functions (Section 6).

System integrators are to bring together a specific subset of SHOP4CF components so they work

together as a system based on this framework architecture. To help in this process, this document

elaborates the platform architecture (Section 7) as well as defines several medium-level views to present

how components are connected to each other (Section 9).

Component developers look mainly for a conceptual and technical design for interoperability. These

needs are addressed especially with platform (including middleware) architectures and data

architectures (Sections 7, 8, 9, and Appendix B).

1.3 Document lifetime

The architecture is developed iteratively taking into account progressing project developments as well

as the feedback from integrators and developers. It is being updated in yearly revision cycles during the

project lifetime.

This document is the second version of the architecture released at the end of the second year of the

project. The vast majority of the contents comes from the first version. The following parts of this

document are introduced since the previous version:

 D3.3 SHOP4CF Architecture

- 8 -

 Section 3.2.4 is extended with a more detailed introduction to International Data Spaces.

 Figures in Sections 6.3 and 6.4 are updated to reflect minor changes of the mapping of

SHOP4CF components to the subsystems in the logical software architecture.

 Section 7.3 is slightly extended to report the chosen implementations of FIWARE Context

Broker and the FIWARE API version.

 Section 7.4 is slightly extended to provide example implementations of SpecG and SpecL

databases.

 The following extensions of data models are added to Section 8:

o New entity Process;

o New entity Resource Specification;

o New relation “linked to” between Resources;

o Corrected cardinality and type of certain relations;

o Explanation of harmonization with FIWARE and ISA-95 data models.

 Section 10 is renamed and new subsections are added there to present the interoperability of

the architecture with existing reference architectures and standards.

 Appendix B is updated to reflect the chosen FIWARE API version.

 Appendix C is added to report about the pilot questionnaire on MES.

 Minor editorial changes are introduced to several other places.

This revision is prepared by the two tasks of WP3: Task 3.5 “Continuous monitoring and updates” and

Task 3.4 “Interfaces to other platforms”.

1.4 Structure of this document

This document is divided into four main parts. Part 1: “Approach for the Architecture” explains the

background and the methodology for the architecture design. Then, Part 2 and Part 3 presents the actual

architecture design, respectively from high-level and medium-level perspective. Part 4 complements

the document with conclusions and additional information.

Part 1: Approach for the Architecture

 Section 1 is this introduction.

 Section 2 presents architectural models and frameworks that are used to design and present the

SHOP4CF architecture.

 Section 3 presents the project-defined requirements for the SHOP4CF architecture as well as

relevant reference architectures that are taken into account.

 Section 4 explains how the SHOP4CF architecture is positioned within the complete design of

the SHOP4CF project, i.e. what concrete subjects are in the scope of this document.

Part 2: High-level design

 Section 5 presents the overview of existing SHOP4CF components.

 Section 6 presents the high-level logical software architecture, incl. SHOP4CF components.

 Section 7 presents the high-level logical platform architecture, incl. the FIWARE middleware.

 Section 8 presents the high-level logical data architecture (concept data models).

Part 3: Medium-level design

 D3.3 SHOP4CF Architecture

- 9 -

 Section 9 describes how SHOP4CF components connect to the FIWARE middleware and other

systems.

 Section 10 presents the interoperability of the SHOP4CF architecture with existing reference

architectures and standards.

Part 4: Conclusions and appendices

 Section 11 explains how the SHOP4CF architecture can be easily extended with additional

functionalities and technologies.

 Section 12 provides the conclusions from this document.

 Appendix A presents the information exchanged via high-level logical interfaces.

 Appendix B discusses the technical FIWARE representation of the earlier-defined data models.

 Appendix C reports about the pilot questionnaire on MES.

 D3.3 SHOP4CF Architecture

- 10 -

2 Architectural standards

This section presents models and frameworks that are used to design and present the SHOP4CF

architecture in the further chapters of this document. The frameworks ensure separation of concerns, so

different contexts of the architecture can be transparently presented.

2.1 The Updated Truijens 5 Aspect Framework (UT5)

This section is a quotation from a project internal report [2].

Architecture encompasses more than software design alone – there are other important aspects that need

to be structured as well. The UT5 framework [3] is used to identify and organize these aspects – see

Figure 1.

Figure 1 UT5 aspect framework

 The software aspect describes the organization of the software under design of an information

system in terms of its modules and the connections between these modules. The specification

of the software aspect is referred to as the software architecture.

 The data aspect describes the organization of the data in an information system, typically in

terms of data structure diagrams or specifications. The specification of the data aspect of an

architecture is referred to as the data architecture.

 The platform aspect describes the organization of the software and hardware, i.e., the

technology assumed to be present to use the information system, both in terms of computing

and networking facilities. The specification of the platform aspect is referred to as the platform

architecture.

 The process aspect describes the organization of the (business) processes managed by or

executed in an information system, typically in terms of business process models. A structure

for the specification of a set of processes is referred to as a process architecture.

 The organization aspect describes how the information system under consideration is

embedded into an organization for its design, implementation and maintenance.

 D3.3 SHOP4CF Architecture

- 11 -

2.2 The Kruchten 4+1 architecture framework (K4+1)

This section is a quotation from a project internal report [2].

In developing an architecture and the software conforming to this architecture, it is important to

distinguish the specification of the user-oriented functionality (what the system defined by the

architecture should do) from the specification of the technical realization of this functionality (how the

system is realized by software developers and how it works after deployment). The well-known

Kruchten 4+1 software engineering framework (K4+1) is used for this [4].

The K4+1 framework is shown in Figure 2 and explained below.

Figure 2 K4+1 view model of software architecture

The framework organizes the description of an architecture around four main views:

1. The logical view specifies the object/module models of the design, i.e., the structure of the

application logic in abstract terms. This view mainly specifies the functionality of a system

under design, so what the system should do.

2. The development view specifies the organization of the software in a development environment,

i.e., the way the software development is supported to arrive at good software management.

This view is concerned with getting good software, so how the system should be realized.

3. The process view specifies the concurrency and synchronization aspects of the software design,

i.e., the way objects or modules in the logical view dynamically collaborate in parallel.

4. The physical view describes the mapping(s) of software onto hardware, thereby reflecting the

distribution aspect. This view mainly specifies the operational deployment of a system, so what

runs where?

Each of the four views has its prime stakeholders and its major concerns. This may lead to a content-

wise divergence of ideas. To avoid this, the four basic views are illustrated by a fifth element:

5. The scenarios describe a few selected use cases that illustrate the four basic views. The

scenarios make things concrete and provide a clear and practical basis for discussions between

the various groups of stakeholders (associated with the basic four views) in the architecture

design or analysis. As such, the scenarios are the ‘content glue’ that provides convergence of

ideas.

 D3.3 SHOP4CF Architecture

- 12 -

2.3 Data modeling

Data modeling is the process of defining a data model, i.e. the structure and meaning of elements of

data, and how they relate to each other and to the real world. This architecture uses the well-established

formal approach by M. West (2010) [5].

The approach can be summarized as provided in Figure 3. The process starts with detailed data

requirements. Based on the requirements, the concept data model is defined. The concept data model is

the meaning of data and it consists of definitions of data entities, their attributes, and relationships

between entities. This document presents the concept data model(s) as the logical data architecture.

Figure 3 Data modeling approach

Defining technical representation requires choosing a concrete technical data format (for instance SQL,

an XML schema, FIWARE NGSI, etc.), i.e. technical constraints. Applying technical constraints to the

concept data model gives the technical representation of the data. Technical representation corresponds

to the K4+1 development view on data architecture.

In that reference data modeling approach, the technical representation is called a physical data model.

In this document, the latter term is not used to avoid confusion with the K4+1 physical view.

2.4 Architecture specification techniques

For explicitness and clarity, this architecture uses the following specification techniques:

• For logical software and platform architectures: informal diagrams and UML Component

Diagrams, depending on the required level of detail.

• For logical data architectures: UML Class Diagrams.

 D3.3 SHOP4CF Architecture

- 13 -

3 Requirements for the Architecture

Requirements for design decisions presented in this document are defined by project resources and by

the reference architectures that the project follows. These sources are defined in this section.

3.1 Project resources

In general, SHOP4CF combines top-down and bottom-up approaches to the architecture design.

Bottom-up means that the software components are already defined and developed to some extent, and

they are taken under consideration for the architecture. Top-down means that there is a coherent

presentation and interoperability of separately developed functionalities (i.e. the components) and that

the scenarios (pilot scenarios, use cases) are defined based on requirements of the pilot partners.

Thus, key requirements for the architecture are the scenarios and the analysis of existing SHOP4CF

components. These requirements are based on the prior project results, mainly:

 Deliverable D2.1: Industrial requirements report [6]

 Deliverable D3.1: Functional requirements specification [7]

 Deliverable D5.1: Definition of the deployment scenarios [1]

 (internal) Task 3.2 Component Analysis Report [8].

 Documentation of existing component interfaces [9] – online resource prepared by WP3 and

WP4 to detail the high-level data flow derived from the above deliverables.

3.1.1 Scenarios

Deliverables D2.1 and D3.1 defined requirements and designed first pilot scenarios (use cases). These

have been taken forward by WP5, and then detailed and extended scenarios were reported in Deliverable

D5.1.

Thus, Deliverable D5.1 contains the most up-to-date scenarios together with the mapping to involved

SHOP4CF components that are the input for this architecture. They are five scenarios defined at the

pilot factories: Arcelik, Bosch (two scenarios), Siemens, and Volkswagen.

3.1.2 Component analysis

Originally, the SHOP4CF description of work contained the development of 24 technical components.

Due to various reasons, including shift in the scope of some pilot use cases and new technological

developments, adjustments to the originally planned developments were needed, resulting in 26

components presented in Section 5.

The initial information on the components was collected from component developers (partners involved

in WP4) via a detailed questionnaire in month 6. That questionnaire was developed by project partners

TUM, DTI, TUE, PSNC and TECNALIA as a part of Task 3.2 and Task 2.2.

The detailed description of the components capabilities, together with the analysis of their technical

features and mapping to pilots scenarios is available in the Component analysis report [8]. That report

 D3.3 SHOP4CF Architecture

- 14 -

concludes activities of Task 3.2, which ended in month 6. Therefore, the first version of the report is

based on the components status at that time. The second version of the Component analysis report has

been updated by the advancements available in month 11. The revision has been done by incorporating

the direct feedback from component developers, their inputs to the documentation of component

interfaces [9], and conclusions of recent meetings of Task 4.1. The second version serves as an input to

the further analysis in Task 3.3 and for this document.

The initial mapping of the components to the functional landscape in Section 6.3 is also based on the

questionnaire’s responses. Due to early stage of project development at that time, neither the pilot

scenarios nor the component functionalities were fully described. Therefore, the component developers

provided information broad enough to allow potential alterations in components capabilities, as those

changes would have been required to address particular needs of use cases. As the result, some

components covered more than one phase and/or level of the high-level logical software architecture

described in Section 6.1. With a better comprehension of components functionalities and their fit to the

logical architecture, the updated mapping was delivered in the second version of the Component

analysis report.

3.2 Reference architectures

With the advent of the a-priori forecasted fourth Industrial revolution (Industry 4.0), the need of

exchanging data among processes and systems has become more and more relevant. Its importance has

been moved by the necessity of highly connected Cyber-Physical Systems able to share knowledge

among different steps in the manufacturing value chain [10]. However, considering the plurality of

vendors and integrators, a need for standardization has followed the development of Industry 4.0

concepts worldwide. The outcome of these standardization processes has been encapsulated in

Reference Architectures (RA). RAs propose and give solutions for enabling service manufacturing

through automation, facilitated data exchanges and digitization [11] [12]. Therefore, guaranteeing

facilities to cope with highly volatile market demands [13].

3.2.1 ISA-95

The International Society of Automation 95 (ISA-95) standard is a set of reference documents meant to

bring homogeneity in the communication processes among business and manufacturing activities [14].

The standard is being used since 2000s and is largely used when establishing communication channels

(i.e. interfaces) among different activities as highlighted above. The standard proposes nomenclature

and modelling approaches that need to be used when exchanging information, therefore allowing

alignment among different stakeholders [15]. Due to its wide adoption, the multi-part standard has been

published as international standard in the IEC 62264 [16], and it constitutes the basis of nowadays

reference architectures. Therefore, alignment in the SHOP4CF is highly considered for guaranteeing

interoperability of the solutions. See Section 6.1 and 8.6.

3.2.2 RAMI 4.0

The Reference Architecture Model Industrie4.0 (RAMI4.0) is an outcome of the German initiative

Platform 4.0 [17] that was published through the German standardization body DIN (Deutschen

 D3.3 SHOP4CF Architecture

- 15 -

Instituts für Normung) with the DIN SPEC 91345 [18]. The model is structured in three dimensions to

represent the several facades of an enterprise in the digitized word.

The three axes of the RAMI4.0 RA are layer, hierarchy levels and life cycle. The former, represents the

different layers in an enterprise and allows the inclusion of digital twins through the concept of

administrative shell. The second represents the hierarchy levels of an enterprise and has been created

taking as reference international standards well known in the industry. Finally, the latter represents the

life cycle of a product from development to production again taking as reference an international

standard.

Through the integration of services and processes in the architecture, using the nomenclature and

structure of the standard, it is possible to build solutions that are highly compatible with digitized

processes, therefore enabling I4.0 participants to easily exchange data where needed. Due to its

importance as one of the first RA for Industry 4.0, SHOP4CF considers the RAMI4.0. See Section 6.1.

3.2.3 FIWARE Smart Industry

FIWARE Smart Industry is a reference architecture and a specialization of the FIWARE framework for

“smart factories” [19]. It is defined as the architecture diagram presented in Figure 4.

Figure 4 FIWARE Smart Industry (source: www.fiware.org)

FIWARE Smart Industry was selected as a base for the SHOP4CF architecture in the project’s

description of work.

Section 10 presents how SHOP4CF maps to FIWARE Smart Industry.

3.2.4 International Data Spaces

The International Data Spaces (IDS) reference architecture has been developed for guaranteeing data

exchange across different entities and enterprises [20].

Due to the complexity of the matter, the architecture is structured with three perspectives: security,

certification and governance. Moreover, due to the need to find commonalities among several

stakeholders the architecture compromises five layers to integrate the different views (i.e. Business,

 D3.3 SHOP4CF Architecture

- 16 -

Functional, Process, Information and System) and they all need to satisfy those perspectives. The IDS

Reference Architecture Model (RAM) defines the interfaces, the information model and the roles to

ensure data sovereignty in the open, federated marketplace [21]. It also structures the way to enforce

the usage policies, which can be defined uniquely for every dataset. Finally, the RAM also specifies the

rules and mechanisms for data traceability and identification of data sources. The IDS standard enables

open, transparent and self-determined data exchange and is a central element of the GAIA-X

architecture, which is providing the infrastructure for secure, trustworthy data sharing [22].

Figure 5 shows a simplified version of the IDS architecture. In IDS, different actors (data providers and

consumers) can become part of the Data Space by implementing an IDS connector. The IDS connectors

can exchange data (including its meta data) while making sure that the information model is

standardized, and the usage policies are enforced. All meta data and connection information is stored

in the broker (top of Figure 5). The identity providers know which connectors are installed in which

company.

Figure 5: IDS architecture (simplified) (source: internationaldataspaces.org)

In the SHOP4CF project, the IDS could be used for integrating lifecycles of data and, due to an ongoing

alignment of IDS with the FIWARE Smart Industry, it could be easily achieved. Therefore, SHOP4CF,

by using the FIWARE Smart Industry with proper connectors, can support integrations also with IDS.

3.2.5 Architectures of prior research projects

SHOP4CF builds also on the architectures of other research and innovation projects in the European

Union (EU) Horizon 2020 program: HORSE and L4MS.

In 2015-2020, the HORSE project designed, developed, deployed and tested the HORSE framework,

which is a reference architecture for cyber-physical systems that support hybrid-manufacturing

processes in the IoT context. The framework is a modular architecture that serves as a blueprint for

 D3.3 SHOP4CF Architecture

- 17 -

building solutions for enterprises in the discrete manufacturing domain, towards their goal to integrate

robotics safely in their end-to-end operations.

The HORSE architecture [23], from the functional high-level perspective, distinguishes between

manufacturing activities taking place in a work cell and activities in a production area or even site

(across work cells). This distinction is depicted with two levels, the Global and Local. There is also

a clear distinction of phases, one regarding design of manufacturing activities (e.g. modeling,

parameterization) and one regarding executions of manufacturing activities (actual product

manufacturing), i.e. the Design and Execution phases.

The L4MS project is a four-year project (2017-2021) to become a one-stop shop for manufacturing

SMEs to help them digitalize intra-factory logistics. This is achieved by Open Platform for Innovations

in Logistics (OPIL) – an open IoT platform with different enablers with the common aim of simplifying

the development of customized logistics solutions.

The OPIL Reference Architecture [24] consists of three layers. The IoT Nodes Layer (L1) is

components that interact with the physical world using well-established technologies such as ROS or

AGV. The Cyber Physical Middleware Layer (L2) adopts FIWARE and allows interoperability among

components of the platform and with external ones. The Software Systems Layer (L3) are software

components developed specifically for the logistics sector.

 D3.3 SHOP4CF Architecture

- 18 -

4 Methodology applied to SHOP4CF

This section explains how the methodology and frameworks described in Section 2 apply to the

SHOP4CF architecture. In particular, it shows how the architecture is positioned within the complete

design of the SHOP4CF project, i.e. what concerns are in the scope of this document, and what others

are left for other work packages and reports.

4.1 The UT5 framework applied to SHOP4CF

The software in the scope of the SHOP4CF project can be divided into two categories:

1. Software directly supporting manufacturing execution (including also its design or

configuration) in working cells, lines, and factory sites. This is the SHOP4CF components

under development in WP4.

2. Software supporting the SHOP4CF Marketplace and the interaction between factories and the

marketplace (e.g. the deployment of components based on the marketplace).

This document focuses only on software category no. 1. Whenever this document refers to software,

category no. 1 is meant. Software category no. 2 is in the scope of WP6.

By applying the UT5 framework to the SHOP4CF project, it becomes structured what kind of aspects

need to be considered and which of them are addressed in this document:

 The software, platform, and data aspects are addressed in this SHOP4CF architecture. They

are elaborated in this document to certain extent, as explained in the next section.

 The process and organization aspects are not covered in this document as they usually depend

on a specific organization, for which a concrete SHOP4CF system is designed. For the

SHOP4CF pilots, these aspects are addressed in prior Deliverables D5.1 [1] and D3.1 [7].

4.2 The K4+1 framework applied to SHOP4CF

This document focuses on the logical view of the K4+1 framework, i.e. the structure of the application

logic in abstract terms focusing on functionality. The logical view on the aforementioned aspects –

software, platform, and data – is designed (Sections 6-9). These designs are referred to as logical

software/platform/data architectures.

Moreover, software developers that are (among others) recipients of this document need also a unified

development specification of interfaces for their work on SHOP4CF components. Thus, this need is

also addressed by designing the development view (technical representation) of data (i.e. FIWARE

representation, Appendix B).

The scenarios are not designed in this document, but it refers to the use cases defined in the prior

project reports as explained in Section 3.1.

The other K4+1 views are not designed in the SHOP4CF architecture. As presented in Figure 2, the

other views are further specifications of the logical view, and those perspectives are considered by other

project teams:

 D3.3 SHOP4CF Architecture

- 19 -

 The development view on particular software components is considered in Task 4.1:

“Development of the components” by specific component developers.

 The process view is considered in Task 4.3: “Continuous integration”.

 The physical view is considered in Task 5.2: “Pilot deployments”.

This document uses informal terms to refer to the level of detail of designs or views: high level and

medium level. The lower level the designed models are more detailed. The document mainly refers to

high-level views (Part 2, Sections 5-8) and medium-level views (Part 3, Sections 9-10). As various

presented concepts could be further decomposed, low-level views could be also defined. However, they

are out of scope in this document. In addition, the top level is referred to in some cases, and it should

be understood as a part of the high level and the most general design for a specific UT5 aspect.

4.3 Data modeling approach applied to SHOP4CF

One of the focuses of this document is interoperability among SHOP4CF components. Internal data

structures within particular components are out of scope, as they are addressed for particular cases by

the component developers in Task 4.1. Thus, the data modeling process, defined in Section 2.3, focuses

on in information exchanged between the components.

The process has been applied as follows. The subsequent steps of the data modeling approach from

Figure 3 are in bold.

The data requirements were derived from the scenarios described in Section 3.1. Expected

connections between SHOP4CF components together with characteristics of data to be exchanged were

analyzed, documented as a project internal report about data flows in pilot scenarios [25], and validated

by particular component developers.

In addition, the requirements were supplemented by the concept data models of FIWARE [26] and of

the ISA-95 standard (Section 3.2.1) to conform to the latter and to reuse the former, when it makes

sense.

Based on the requirements, similar kinds of data to be exchanged were grouped into more general data

entities, resulting in designing the SHOP4CF concept data models (the high-level logical data

architecture, Section 8).

As the middleware platform supporting the interoperability is FIWARE (Section 7), the platform

documentation defines the technical constraints for data in SHOP4CF. As explained in the previous

section, the K4+1 development view in this architecture focuses on FIWARE representation only.

Finally, the technical representation (FIWARE) of SHOP4CF concept data models is discussed

(Appendix B).

 D3.3 SHOP4CF Architecture

- 20 -

5 Overview of SHOP4CF components

SHOP4CF components directly provide main functionalities considered within the SHOP4CF

architecture. The analysis leading to this overview is reported in Section 3.1.

Table 1 contains the overview of the SHOP4CF components. The component acronyms has been

proposed by partner TU/e in Task 3.2 in cases they were not defined by component developers.

Note that this overview will be extended in the course of the project. The component developers may

propose new components as solutions for use cases that are not yet fully defined. Moreover, it is

expected to acquire a new set of components as a result of the open call programme.

Table 1 List of SHOP4CF components with short descriptions

Acronym Name Application area / Main function Developer

ROS-Mon ROS Monitoring Robot system status monitoring to

support workers

DTI

WPO-RL Workcell Process

Optimization based on

Reinforcement Learning

Process control and optimization based

on reinforcement learning

DTI

DTS Dynamic Task

Scheduling for Efficient

Human-Robot-

Collaboration

Task manager for safe and efficient

human-robot interaction, by distributing

robot-tasks to sub tasks, tracking their

status, preventing human-robot

collision

FZI

FBAS-ML Force-Based Assembly

Strategies for difficult

snap-fit parts using

Machine Learning

Supporting human workers with a

force-sensor (force-control) on classical

industrial and/or collaborative robots to

fit two or more parts together that

require a snap connection

FZI

F-TPT Flexible Task

Programming Tool

Programming of robots with GUI to

quickly develop or change new control

sequences, monitoring also status

feedback.

FZI

ASA Automated Safety

Approval

Determining whether the chosen robot

speed is safe and the required

separation distance has been chosen and

can be covered by the sensor

configuration

IFF

RA Review of Risk Analysis Risk analysis for hazards identification

and risk estimation of robotic

applications

IFF

OpenWIFI Open-source

implementation of

802.11 WIFI on FPGA

Low latency network connectivity

between WiFi-enabled devices for real-

time control to support process

management, interactions with robots,

collecting sensor data

IMEC

 D3.3 SHOP4CF Architecture

- 21 -

M3RCP Multi-Modal Multi-

Range Communication

Platform

Facilitation of the incorporation of IoT

devices (sensors/actuators) in a factory

shop floor, as well as the required local

wireless IoT communication

infrastructure to connect such devices

IMEC

Wi-POS Wireless Positioning

system based on UWB

technology

Safe and controllable usage of AGVs

by providing accurate localization.

IMEC

DYAMAND DYAMAND Interoperability between different

systems of potentially different vendors

Remote monitoring and management of

systems on the factory floor

IMEC

HA-MRN Human Aware Mobile

Robot Navigation in

Large-Scale Dynamic

Environments

Mobile robot navigation with human

detection and trajectory adaptation

according to safety and social rules

JVERNE-FZI

IL-DT Digital Twin for

Intralogistics

Automatic building of digital twin

based on simulation model to solve

intralogistics challenges depends on

analysis level

PSNC

PMADAI Predictive Maintenance

and Anomaly Detection

in Automotive Industry

Prediction or prevention of potential

failures and incidents. Planning of

services and repairs

PSNC

VQC Visual quality check for

automatic paint defect

detection in Autom. Ind.

Quality monitoring. Detection (and

potentially classification) of car paint

defects

PSNC

VR-RM-MT Virtual Reality Set for

Robot and Machine

Monitoring and Training

Training and supporting human

workers in collaborative tasks through

remote visualization and monitoring

TAU

M2O2P Multi-Modal Offline and

Online Programming

solutions

Online/Offline robot programming

using input methods based on human

natural actions

TAU

DCF C2NET Data Collection

Framework

Data collection from the factory shop

floor and ERP systems.

Analysis of process and data streams

using a Complex Event Processing

(CEP) engine

TAU

DT-PC Digital Twin (Planning

and Control)

Remote visualization, performance

monitoring, and control of discrete

processes at runtime

TAU

ADIN Adaptive Interfaces Adaptation of interfaces depending on

the information collected from

production line devices and the user’s

profile, skills, and roles within the

system

TAU

AR_Manual_Editor

(AR_Man_Edit)

Augmented reality-based

manual editor

Mixed Reality (MR) Component

Simulator for operator training in

customized product assembly process,

TECNALIA

 D3.3 SHOP4CF Architecture

- 22 -

including recognition of objects,

sequence of operations and AR

guidance to operators.

AR_Teleassistance

(AR_Teleassist)

Augmented reality-based

teleassistance

Communication between workers and

experts through video streaming and

augmented reality indications

supporting operators with the

maintenance and collaboration of

working processes.

TECNALIA

VR_Creator VR_Creator Virtual Reality (VR) to assist workers

on training on machines

TECNALIA

MPMS Manufacturing Process

Management System

End-to-end manufacturing process

management, i.e., design, enactment

and orchestration of manufacturing

processes, with dynamic agent

allocation, exception handling and

process monitoring

TUE

AR-CVI AR for Collaborative

Visual Inspection

Visual support to humans in inspection

tasks

TUM

WoT-IL Interoperability Layer

through Web of Things

Translation of OpenAPI specification

into Web of Things (WoT) “Thing

Description” to improve

interoperability

UPM

 D3.3 SHOP4CF Architecture

- 23 -

6 High-level logical software architecture

This section presents the logical view (as in K4+1) on the software aspect (of UT5), i.e. the organization,

from the functional perspective, of the SHOP4CF components.

The following subsections present the functional overview of SHOP4CF, abstract interfaces of this

high-level architecture, the positioning of particular SHOP4CF components, and interoperability

defined for the pilots.

6.1 Top-level logical software architecture

Manufacturing processes can be supported in their different phases: at design of the processes, at their

execution (i.e. actual product manufacturing), and at further analysis of (the data resulting from) the

execution. Moreover, processes can be supported at different manufacturing levels: within specific

work cells and across work cells. These levels are referred to as the local level and the global level,

respectively. Work cells are defined as in the ISA-95 equipment hierarchy model or as station in the

hierarchy levels dimension of RAMI4.0 (see Section 3.2).

SHOP4CF addresses all these phases and levels by providing relevant functionalities. Thus, the top-

level overview of SHOP4CF functionality (i.e. the logical software architecture) consists of the six

subsystems, as presented in Figure 6. At this level of detail, it is not yet considered how the subsystems

interact with each other and with the external world.

Figure 6 Top-level logical software architecture

The SHOP4CF Architecture Workshop [2] defined the levels and phases in detail as follows:

The architecture has two levels. Conforming to the HORSE architecture, the lower level is the

local level and the upper level is the global level:

 The local level provides functionality to support for individual work cells, for example

augmented reality support with a robot.

 The global level provides functionality across individual work cells, for example end-

to-end manufacturing process support.

The architecture has three columns:

 The left-hand column provides support for designing intra-work-cell (local) and inter-

work-cell (global) manufacturing environments. Note that this does not mean designing

software; it means parameterizing software to suit the needs of a specific shop floor.

 D3.3 SHOP4CF Architecture

- 24 -

 The middle column provides support for the execution of the actual manufacturing

process, i.e., the material transformation process. From a logical point of view, there

is one copy of the global subsystem and a copy of the local subsystem per work cell

(although physically, these copies may be the same system). (…)

 The right-hand column provides support for analysis of data resulting from system

execution in the middle column for both real-time monitoring of production processes

(e.g., via a dashboard) and optimization of either execution (i.e., without explicit

redesign) or design (i.e., with explicit redesign). Support includes ‘traditional’

business intelligence, but also manufacturing-specific functionality like digital twins.

The Execute Local and Analyze Local subsystems are replicated (shown in the figure by a ‘stack

of boxes’) because from a logical architecture point of view, every manufacturing cell has its

own instance (copy) of these subsystems. In a physical architecture, these can be mapped to

a single component per site that keeps track of the state of each individual cell.

Categorizing whether a software component belongs to the global or the local level is not always trivial;

for instance for a component supporting a few work cells. If a component provides functionality to

specific work cells, without being aware what is happening outside of these work cells, then such

a component is considered local. Otherwise, it is a global-level component.

6.2 High-level interfaces

The high-level logical software architecture from Figure 6 is further detailed by elaborating the

interfaces between the six subsystems and designing databases that support the communication, as

presented in Figure 7. This high-level overview was first designed in SHOP4CF Architecture Workshop

[2], and is inspired by the design of the HORSE logical software architecture [23].

Figure 7 High-level logical software architecture with interfaces

That workshop defines these interfaces as follows:

 D3.3 SHOP4CF Architecture

- 25 -

The architecture contains direct and indirect interfaces between the six subsystems. The

indirect interfaces are modeled as databases. Interaction using these interfaces is

asynchronous and does not have a real-time character. The direct interfaces are modeled as

direct connections. These connections can be synchronous (i.e., requiring an instant reaction

to requests) or asynchronous (i.e., not requiring an instant reaction to requests or no reaction

at all). The direct connections have a real-time mode of operation, which can be soft-real-time

(e.g., for inter-cell synchronization) or hard-real-time (e.g., for digital twins used for safety

reasons).

This diagram presents also that the Execute Local subsystems interacts with human workers performing

actual manufacturing steps. The Design and Execute Local subsystems interact with robotic systems to,

respectively, design and execute manufacturing steps. Note that this diagram does not depict all possible

dashboards (user interfaces) that may exist in different subsystems and for different kinds of users.

The information exchanged between the six subsystems and the databases is detailed in Appendix A.

Section 7.4 further discusses the interfaces from the perspective of the platform architecture, and

Section 8.1 addresses the interfaces from the perspective of the data architecture.

6.3 Positioning of SHOP4CF components

The six subsystems from Figure 6 are decomposed into particular SHOP4CF components. Thus, all the

SHOP4CF components are mapped to the logical software architecture, such that an initial “functional

landscape” of the software under development is obtained. The process leading to this result is reported

in Section 3.1.

Figure 8 depicts this mapping.

Figure 8 Mapping of SHOP4CF components to the high-level logical software architecture

 D3.3 SHOP4CF Architecture

- 26 -

Components are indicated as rectangles with their acronyms, and with their responsible component

developer in parentheses. For visualization purposes, the rectangles are colored the same as in the Table

1. Arrows indicate the (horizontal or vertical) integration of a component with other components

positioned in the pointed phase and level of the diagram. This creates the overview of all integration

possibilities between components that is foreseen in the current stage of the project.

6.4 Mapping to scenarios

Figure 9 presents interoperability among components that is specific to the initially defined pilot

scenarios (Section 3.1.1). This serves as a very first example on how a concrete SHOP4CF system could

be designed from the functional perspective. This is an outcome of the data requirements analysis in

the project internal report about data flows in pilot scenarios [25] (see also Section 4.3).

Figure 9 Interoperability among components in the initial pilot scenarios

SHOP4CF components that were initially not assigned to any of the use cases are omitted in this

diagram. In addition, components, for which it was not defined whether they integrate with other

SHOP4CF components within the use cases, are also omitted.

Communication within each of the use cases is depicted with the following colors: Arcelik – blue,

Bosch Use case 1 – orange, Bosch Use case 2 – red, Siemens – green, Volkswagen – purple. Exact

routes of the arrows (going through other subsystems) do not matter in this diagram.

Moreover, dashed arrows indicate the integration between components that is still under consideration

and is being discussed as a part of the Task 5.2: “Pilot deployment”.

 D3.3 SHOP4CF Architecture

- 27 -

7 High-level logical platform architecture

This section presents the logical view (as in K4+1) on the platform aspect (of UT5), i.e. the organization,

from the functional perspective, of software and hardware that is necessary for the components from

the software architecture to work. The middleware is especially considered as well as its relation to the

software architecture.

7.1 Top-level logical platform architecture

The top-level logical platform architecture of SHOP4CF is presented in Figure 10. It consists of the

software and hardware layers.

The software layer consists of SHOP4CF components, the middleware, containers (i.e. OS-level

virtualization [27]), and 3rd-party information systems (i.e. external to SHOP4CF, such as MES) that

may exist in a shop floor. The hardware layer consists of servers. In addition, cyber-physical systems

and IoT devices of a shop floor may belong to the both layers.

Figure 10 Top-level logical platform architecture

Vertical adjacency depicts connections between platform components. SHOP4CF components connect

to the middleware. The middleware connects to cyber-physical systems and IoT devices but also some

SHOP4CF components can directly connect to those. Both SHOP4CF components and the middleware

run in containers. In addition, some SHOP4CF components can run directly on bare servers, without

containers, in justified cases.

Moreover, some SHOP4CF components connect to 3rd-party information systems. Other connections

of the 3rd-party systems are out of scope and are not necessarily depicted in the diagram.

Containers are used to make software components easy to deploy and control. The chosen

implementation for containers is Docker [28].

The three platform components – Cyber-physical systems, Middleware, and SHOP4CF components –

correspond to the three layers of the OPIL Reference Architecture (Section 3.2.5).

 D3.3 SHOP4CF Architecture

- 28 -

7.2 Overview of FIWARE middleware

For interoperability of SHOP4CF components, the SHOP4CF architecture focuses especially on the

middleware. Middleware can be defined as “software glue” [29], i.e. software providing services (for

instance for exchange of information) to functional software components (for instance SHOP4CF

components). Thanks to the middleware, functional components do not care about architectures and

connections to other components.

The middleware component from Figure 10 must be decomposed to show how it supports the software

architecture. To decompose the middleware from the perspective of its functionality (i.e. the logical

view of K4+1), the adopted implementation of the middleware is first discussed.

The chosen implementation for the middleware is FIWARE [30]. FIWARE focuses on management of

context information, i.e. the current state of the surrounding real world, understood as the state of

relevant physical and virtual objects (for instance, a virtual object may be a manufacturing task to be

executed). The use of context information helps to develop what is referred to as a “smart factory”.

SHOP4CF components exchange information via the FIWARE middleware whenever possible. Only

connections that have hard real-time constraints are organized directly between two involved

components (or between a component and IoT) as the FIWARE middleware does not guarantee

response times for hard real-time systems [31].

7.3 High-level middleware architecture

The top-level logical platform architecture from Figure 10 is further elaborated by decomposing the

middleware, as presented in Figure 11 and discussed below. Note that the focus is on the middleware,

thus SHOP4CF components are treated as a black box and their other connections are not considered.

Figure 11 High-level logical middleware architecture

The core component of FIWARE is the Context Broker that facilitates exchange of context

information. The chosen implementation of Context Broker is Orion-LD [32] and API is NGSI-LD [33].

 D3.3 SHOP4CF Architecture

- 29 -

As the Context Broker only keeps the current state of the real world, FIWARE offers also components

for storing historical data [30]. Different implementations exist1, thus in this document, they are jointly

referred to, from the functional perspective, as historical context store.

Moreover, FIWARE offers components to interface the Context Broker with cyber-physical systems

and IoT devices – these are IoT agents – and with 3rd-party systems – these are Systems adapters.

Figure 11 could be extended with further middleware components in the future, for instance in case of

new use cases that require components to exchange streaming data, for which the Context Broker is not

suitable.

The connections from SHOP4CF components to the middleware are further elaborated in the medium-

level architectures in Section 9. The mapping to FIWARE Smart Industry architecture, a more detailed

FIWARE decomposition, is discussed in Section 10.

7.4 Mapping to software architecture

Figure 12 presents how the middleware components support communication between SHOP4CF

components, i.e. how the high-level logical software architecture (Figure 7) maps to the logical

middleware architecture.

Figure 12 Mapping of high-level logical software and middleware architectures

The Context Broker supports communication:

 between the Execute and Analyze phases (implementing the LogL/LogG databases) and

between their Global and Local levels,

1 For instance, FIWARE Cygnus and Comet, but also a few others.

 D3.3 SHOP4CF Architecture

- 30 -

 between Execute Local and cyber-physical systems,

 between components within any of the four Execute/Analyze Global/Local subsystems,

including communication across instances of the Local subsystems (that are represented by the

stacks of boxes with the rounded arrows).

As for some use cases, the current context information is not enough, some communications are handled

by the historical context store. This is some part of communication between Execute and Analyze but

also from Analyze to Design (implementing the Rep database).

In addition, communication between the two Design subsystems that focuses on static information (e.g.

processing models, task definitions) may be handled by other databases, such SQL databases or

Business Process Model and Notation (BPMN) files. Feasibility of adopting FIWARE for the Design

phase is under consideration. Note however that the Design subsystems already use the information

from FIWARE by accessing the historical data stores (via the “offline redesign information” path).

Note that this mapping only expresses that this is a feasible implementation of the connections, but this

is not the only way that is admissible by the SHOP4CF architecture.

Note also that this is the logical view (of the K4+1 framework) on the middleware. From the physical

perspective, all the multiple Context Brokers and historical data stores in Figure 12 could be

implemented by single instances of relevant software applications.

 D3.3 SHOP4CF Architecture

- 31 -

8 High-level logical data architecture

This section presents the logical view (as in K4+1) on the data aspect (of UT5), i.e. the organization,

from the functional perspective, of SHOP4CF concept data models. The data modeling process was

explained in Section 4.3.

The following subsections present first the top-level data architecture and relevant groups of data

models. Next, the lifecycle of selected data models imposed by the FIWARE middleware and their

mapping to scenarios are discussed. Finally, the mapping to the ISA-95 standard is reported.

8.1 Top-level logical data architecture

The data models focus on information exchanged among SHOP4CF components. The data models are

divided into the two main groups:

 Design data models – These are entities that do not change their status during manufacturing

execution. They are shop-floor locations, definitions of manufacturing processes, of tasks, etc.

and are usually communicated via interfaces no. 1-9 of Figure 37 (the high-level logical

software architecture).

 Execution data models – These are entities that may change their status during manufacturing

execution. They are tangible resources in a shop floor, tasks instances under execution, alerts,

etc. They are communicated via interfaces no. 8-22 of Figure 37.

Moreover, execution data models may reference design data models (e.g. a task under execution

referencing its definition).

The high-level overview of concept data models in these two groups is presented in Figure 13. These

and more detailed data models together with specific relationships are further elaborated in the two

following subsections.

Figure 13 Top-level logical data architecture

8.2 Design data models

The design data models are the concepts of locations, work definitions, and resource specifications, as

elaborated in the following subsections.

 D3.3 SHOP4CF Architecture

- 32 -

8.2.1 Locations

Location represents a specific place in a factory such as work cell, production line, area, site, etc. as in

the ISA-95 equipment hierarchy model (see Section 3.2.1). A location may consist of other locations to

model such a hierarchy, as presented in Figure 14.

Locations are referenced by execution data models to represent where something is, happens, is target

at, etc.

Figure 14 Location data model

8.2.2 Work definitions

Work definitions is Process Definition that consists of Task Definitions that consists of Step

Definitions. Step Definition may consist of further Step Definitions (substeps).

These relationships are presented in Figure 15.

Figure 15 Work definitions data model

Step Definition defines how to perform the work in detail. Step Definition may have attributes such as

required skills that denote what skills are required by a resource to perform the step. This may be further

extended by concrete needs of specific scenarios.

8.2.3 Resource Specifications

Resource Specification models a type (a kind or a class) of Resources (see Section 8.3.1), if no concrete

Resource instance needs to be known. Resource Specification may be used in the design phase to

supplement a Task Definition, i.e. to represent what kind of Resources are to be used for a certain Task

Definition. They can be also used for scheduling, i.e. based on Resource Specification, the scheduler

knowns to which Resources it can assign a Task (i.e. which Resources are of the qualified type).

The relevant relations are presented in Figure 16.

 D3.3 SHOP4CF Architecture

- 33 -

Figure 16 Resource Specification data model

For instance, assume we have Task Definition “assemble a PCB”. This Task Definition involves

Resource Specification “worker qualified for electronics”. Three Resources are currently available:

AGV #5, worker John Winter, and worker Anna Smith, but only the latter is specified by that Resource

Specification. A scheduler is about to assign Task “assemble PCB no. 2342852”. Thanks to the resource

Specification, the scheduler knows that at the moment, the task can be only given to Resource “worker

Anna Smith” that is of the qualified type.

8.3 Execution data models

The execution data models are the concepts of resources, tasks, processes, and alerts, as elaborated in

the following subsections.

Taking into consideration the platform architecture, the execution data models are meant to be

exchanged mainly via the FIWARE middleware (see Section 7.3). Thus, to ensure portability and

interoperability of SHOP4CF components, the execution data models are defined using Smart Data

Models (FIWARE Data Models), provided that such corresponding models already exist [34].

8.3.1 Resources

Resource is an abstract entity representing tangible objects that are present in a shop floor and that are

of importance to manufacturing processes. Abstract means that no Resource instance exists directly.

This entity is defined for readability purposes, and can be instantiated only by its concrete subtypes:

Device, Material, Asset, and Person, as presented in Figure 17.

Figure 17 Resource data model

 D3.3 SHOP4CF Architecture

- 34 -

A resource references locations, at which it is currently located (present). For instance, an AGV can be

at a specific production line and at a specific work cell (belonging to that production line) in the same

moment.

A resource references other resources that it is physically linked to. For instance, an AGV with a robotic

arm may be modelled as two resources but linked to each other. The information about the link may be

used for scheduling purposes, e.g. when one of linked resources is busy, the other one cannot be used

for different purpose at the same time.

A resource references Resource Specifications that specifies the type of the resource (see Figure 16).

Device is defined exactly the same as the Device entity of Smart Data Models as quoted below [26].

An apparatus (hardware + software + firmware) intended to accomplish a particular task

(sensing the environment, actuating, etc.). A Device is a tangible object which contains some

logic and is producer and/or consumer of data. A Device is always assumed to be capable of

communicating electronically via a network.

Device entity has the same attributes as the origin FIWARE model. Device may be able to perform

a step in manufacturing. For instance, robots, AGVs, or sensors are devices.

Material is a product (final or intermediate) or an ingredient of a manufacturing process. Its attributes

represent its current state. The state may be physically observed, for instance location, but also process-

specific, for instance a result of quality control. For instance, manufactured PCBs or capacitors required

for assembling PCBs are materials.

Asset is a tangible item that is needed for a manufacturing process but is neither a material nor a device.

It may be a tool or an element of a device. For instance, a gripper for a robot (i.e. for a device) or

a hammer for a person are assets. The Asset model is not derived from the currently known data

requirements but it is defined to complement the subtypes of Resource, so they cover together all kinds

of resources experienced in the real world. Asset may be necessary in future scenarios.

Person is a human (human worker) that can perform a step in manufacturing.

8.3.2 Tasks

Task is a manufacturing operation that is to be executed. This data model is considered indivisible,

although in the real world, it may be a complex multi-step operation. Task references Task Definition

that specifies how to perform the work in detail (see Section 8.2.2).

Task may specify a set of involved resources: persons or devices required to work, assets to be used,

materials to be used (as ingredients) or produced within the task.

Task may also specify locations, at which the operation should happen, together with the specific

function of each location within the task. The functions of locations may be for instance “source location”

or “target location” but their number and interpretation depends on a specific Task Definition.

Task’s relationships are presented in Figure 18. Locations’ functions are attributes of the Task-Location

relationship.

 D3.3 SHOP4CF Architecture

- 35 -

Figure 18 Task data model

Task’s attributes are:

 specific work parameters (depending on Task Definition),

 the current status of the work (progress),

 output parameters (e.g. a binary result of a quality-check task).

The work parameters are constant for a specific task, and the other attributes change during execution.

For instance, a task may be the following: “Task for AGV #5 to move 5 pallets from the storage to

production line #6; and for person X to move then the pallets onto the line”. It is assumed that there is

a Task Definition already defined that describes such a hybrid transportation work, but yet without

parameter values such as how, how many, what, where from, where to. Then, this task could be

represented as given in Figure 19.

Figure 19 Example modeled task (UML object diagram)

8.3.3 Processes

Process models a set of manufacturing operations to be executed, i.e. Tasks. Process references Process

Definition that specifies how to perform the work in detail. Process is not executed directly, but its

constituent Tasks are executed by concrete agents.

These relationships are presented in Figure 20.

 D3.3 SHOP4CF Architecture

- 36 -

Figure 20 Process data model

Similarly as for Task, Process’ attributes are:

 specific work parameters (depending on Process Definition),

 the current status of the work (progress),

 output parameters.

The work parameters are constant for a specific process, and the other attributes change during

execution.

8.3.4 Alerts

Alert is defined exactly the same as FIWARE Alert data model (i.e. the existing FIWARE concept data

model is adopted for SHOP4CF) as quoted below [26]. Examples not related to manufacturing are

omitted in this quote.

This entity models an alert and could be used to send alerts related to (…) [specific categories

of alerts]. The purpose of the model is to support the generation of notifications for a user or

trigger other actions, based on such alerts.

An alert is generated by a specific situation. The main features of an alert is that it is not

predictable and it is not a recurrent data. That means that an alert could be an accident (…).

Alert may be related to a number of resources or locations, as presented in Figure 21. This extends the

origin entity from Smart Data Models.

Figure 21 Alert data model

Alert entity has the same attributes as the origin FIWARE model. However, the allowed values for

attributes “category” and “subcategory” are to be extended to model necessary types of alerts in

SHOP4CF.

 D3.3 SHOP4CF Architecture

- 37 -

Example alerts are an alert generated by an observed safety breach at a production line, or a predicted

maintenance request to prevent unexpected failures of a device.

8.4 Mapping to middleware architecture

The context information in FIWARE (Section 7.2) is based on the execution models as they represent

the current state of manufacturing processes.

The concept of context information imposes additional requirements on how the lifecycle of data

instances (i.e. concrete instances of entities) is organized (i.e. how long instances are kept in the current

context). These lifecycle rules for the execution data models apply only when they are communicated

via FIWARE, and they are defined below.

In general, an entity instance (an object) should be kept in the current context (i.e. in the Context Broker)

as long as it stays relevant for manufacturing processes. Therefore, a concrete SHOP4CF system should

be designed in such a way that not-anymore-relevant data instances are removed from the Context

Broker. Note that removing data from the Context Broker does not mean it is also removed from the

historical data store.

Resources (as defined in the previous section) are usually long living and define the state of the

corresponding real-world objects at a given moment in time. There is always exactly one instance for

each relevant real-world object. If the state of a real-world object changes (e.g. a change of location for

a robot, a change of measured value by a sensor), software components do not send a new instance to

the Context Broker, but only update relevant attributes of existing instance.

Processes and Tasks are usually short living (e.g. minutes, hours) and immutable, except for the status

and output attributes. These entities should be removed from the current context when they become not

relevant anymore. What relevancy means depends on a use case. Usually, a process or a task is no

longer relevant when its status is marked as completed and this information is read by the component

that created the task, so that component can safely delete the task instance from the Context Broker.

Note that after deleting a task from the Context Broker, it remains in the historical context store (if in

use) for statistics or analysis.

Alerts are usually short living and immutable. For this model, a few deletion policies can be adopted

for different alert categories (subcategories):

 Alert’s creator deletes the alert instance when it observes that the alert is no more relevant.

 A component reacting to the alert deletes it once the situation is handled.

 On creation, the alert may be marked as transient, i.e. may contain an explicit expiration time.

The usual lifecycle rules are summarized in Table 2. A specific use case may require modifying some

rules.

Table 2 Lifecycle rules for execution data models in FIWARE

Data model Updates Deletion

Resource Every time the state of the corresponding

real-world object changes

Rarely. Deleted by its creator when the

resource is no more relevant (e.g. material

leaving the factory).

 D3.3 SHOP4CF Architecture

- 38 -

Process, Task Immutable, except for the status and

output attributes

Deleted by its creator, usually when the

task is completed.

Alert Immutable Either deleted by its creator,

or deleted by a component that reacts,

or marked as transient (auto-expiring)

8.5 Mapping to scenarios and middleware architecture

It was derived from the scenarios what specific information is to be exchanged between SHOP4CF

components during actual manufacturing execution (the process is explain in Section 4.3).

Table 3 presents how the example specific information should be organized using the defined execution

data models and the FIWARE middleware.

Table 3 Mapping of data models to specific information from scenarios

Specific information

from scenarios

Data model Details

Sensor values Device Updates to attribute “value”

AGV’s positions: x/y coordinate in

cm

Device Updates to attribute “location”

AGV’s/Robot’s status, for instance:

“idle”, “busy”, “charging”, etc.

Device Updates to attribute “deviceState”

Results of quality check of a

product

Material

(and/or)

Task

Updates to the status attribute

(and/or)

Updates to the output attributes

Maintenance predictions: alert

referring to a specific equipment

Alert New instance created

Task orders to perform specific

manufacturing operations, for

instance: what kind of operations,

how many parts to be loaded, etc.

Task New instance created

Task’s status updates (from actors) Task Update to the status attribute

8.6 Mapping to the ISA-95 standard

For increased interoperability, the SHOP4CF data models do not only follow Smart Data Models (see

Section 8.3) but also conform to the models of the ISA-95 standard (see Section 3.2). Table 4 shows

the exact mapping between the concept models.

Table 4 Mapping between SHOP4CF and ISA-95 data models

SHOP4CF data model ISA-95 data model

Location Hierarchy scope

Process Definition

Task Definition

Step Definition

Process Segment

 D3.3 SHOP4CF Architecture

- 39 -

Resource Specification
Equipment/Personnel/Material

Specification

Device Equipment

Material Material Lot

Asset Physical Asset

Person Person

Process Operations Definition

Task Operations Segment

Alert Work Alert

 D3.3 SHOP4CF Architecture

- 40 -

9 Medium-level logical platform architecture

This medium-level design aims at presenting how software components connect to platform

components, i.e. how particular SHOP4CF components connect to middleware components, 3rd-party

information systems, and IoT devices. This further elaborates the high-level platform architectures

presented in Section 7.

To this end, SHOP4CF components are grouped into five interoperability classes that have different

characteristics of such connections. A single component can have a few such logical connections, thus

it can be assigned to more than one class.

Elaborating the top-level platform architecture (Figure 10) and the high-level middleware architecture

(Figure 11), by decomposing SHOP4CF components into the interoperability classes, leads to Figure

22. The interoperability classes are the five modules within SHOP4CF components.

Figure 22 Interoperability classes of SHOP4CF components

The set of interoperability classes can be extended in the future revisions if new use cases are identified.

Such case may be for instance producers or consumers of stream data (see also Section 7.3).

The rest of this section is organized as follows. Firstly, the mapping of concrete SHOP4CF components

to the classes is discussed. Secondly, the classes are further characterized. Finally, the example medium-

level architecture of a widely interoperable component is presented.

9.1 Mapping to software architecture

This framework architecture does not specify a fixed mapping of components to the interoperability

classes as this may vary depending on future use cases. However, the mapping based on the already-

defined pilot scenarios is presented in Table 5. It is based on the analysis of the data requirements, as

discussed in Section 4.3.

This mapping should not be considered as an initial one, based on the first pilot scenarios.

 D3.3 SHOP4CF Architecture

- 41 -

Table 5 Mapping of SHOP4CF components to interoperability classes

Interoperability class High-level

subsystems

SHOP4CF components

Both context producer

and consumer

Execute G./L.

Analyze G./L.

ADIN, DTS, DYAMAND, HA-MRN, M3RCP, MPMS,

VR-RM-MT, VQC

Context producer Execute G./L.

Analyze G./L.

PMADAI, Wi-Pos

Context consumer Execute G./L.

Analyze G./L.

AR_Man_Edit, AR_Teleassist, AR-CVI

Historical-context

consumer

Design G./L.

Analyze G./L.

IL-DT, PMADAI

System adapter all DCF, DYAMAND, M2O2P, M3RCP, MPMS

IoT agent Design Local

Execute Local

DTS, FBAS-ML, HA-MRN, M2O2P, M3RCP, ROS-

Mon, Wi-Pos

9.2 Characteristics of interoperability classes

Most of FIWARE components, including the Context Broker, communicate via FIWARE NGSI API

[35]. Depending on the interoperability classes, the communication between software and platform

components is organized differently, as presented below.

Context producer is a component that sends updates of the context information to the Context Broker,

as presented in Figure 23.

Figure 23 Platform architecture for context producers

Context consumer can work in two modes, as follows.

1. Context consumer in subscription mode first subscribes to certain context changes, and then

Context Broker initiates the communication when relevant updates occur, as presented in

Figure 24. It is usually the preferred mode for consuming context.

Figure 24 Platform architecture for context consumers in subscription mode

2. Context consumer in query mode is a component that queries Context Broker for a specific

context information, as presented in Figure 25. It is the simpler but rarer case as it requires

 D3.3 SHOP4CF Architecture

- 42 -

active polling from the component. It makes sense when the component needs to request the

context information rarely, only in certain situations.

Figure 25 Platform architecture for context consumers in query mode

Historical-context consumer is a component that queries the historical context store, as presented in

Figure 26. Several implementations and interfaces of this store exist [30].

Figure 26 Platform architecture for historical-context consumers

System adapter and IoT agent are components that communicate with 3rd-party information systems

(such as MES) or IoT devices (cyber-physical systems), respectively, via specific interfaces that such

platforms provide. Such communication may be initiated from both ends, depending on concrete

platforms and use cases.

9.3 Extensive example of interoperability

From the perspective of interoperability, the Manufacturing Process Management System (MPMS) is

the most complex case among SHOP4CF components. It addresses most of the pilot scenarios and

belongs to most of the interoperability classes: context producer, context consumer, and system adapter.

In this section, its logical software architecture is first elaborated. Then, its interfaces to other platform

components are specified. This section focuses on the Design Global and Execute Global subsystems

of the high-level logical software architecture of Figure 6, as these are the two subsystems that MPMS

covers in all known use cases.

MPMS provides end-to-end (i.e. from order reception until product delivery) manufacturing process

management and orchestration of activities by:

 modeling processes and agents,

 executing in automated way the processes by assigning activities to agents,

 providing process monitoring for a complete status overview of the manufacturing processes.

Regarding the design side, MPMS is decomposed in a number of sub-components, as shown in Figure

27. The “Process/Agent/Shop Floor Data” DB is part of the specG DB of Figure 7. The “Task/Step/Cell

Data” is part of the SpecL DB of Figure 7. “Product Defin.” DB is also added as this provides useful

 D3.3 SHOP4CF Architecture

- 43 -

information in the process flow modelling. As it is part of external systems (e.g. an ERP), it is shown

in blue.

Figure 27 Logical architecture of MPMS in Design Global subsystem

Regarding the execution side, MPMS mainly consists of a Process Engine that enacts the process

models and assigns tasks to agents. A Production Execution Monitoring visualizes the production status.

All sub-components are shown in Figure 28.

Figure 28 Logical architecture of MPMS in Execute Global subsystem

Regarding the interfaces from/to other SHOP4CF components, for sake of brevity in this medium level,

the focus is only on the main sub-components for each phase, i.e., the Process Flow Modelling (Modeler)

and the Process Execution Control (Process Engine). The platform architecture with the relevant

interfaces is shown in Figure 29.

 D3.3 SHOP4CF Architecture

- 44 -

Figure 29 Platform architecture of MPMS

 D3.3 SHOP4CF Architecture

- 45 -

10 Interoperability of the architecture

10.1 Relation to FIWARE Smart Industry

The FIWARE Smart Industry (FIWARE-SI) architecture is introduced in Section 3.2.3. This section

presents how the SHOP4CF architecture implements FIWARE-SI, and specifically how the latter is

extended by SHOP4CF.

From the perspective of SHOP4CF, FIWARE-SI addresses two UT5 aspects: platform and software.

The context of each of the two aspects designed in SHOP4CF is presented separately in the following

subsections.

10.1.1 Platform aspect

FIWARE Smart Industry (FIWARE-SI) corresponds to the SHOP4CF platform architectures presented

in Section 7. FIWARE-SI is based on the technology-oriented diagram presented earlier in Figure 4,

while the SHOP4CF platform architectures are the K4+1 logical view (i.e. functionality-oriented, not

technology-oriented).

Figure 30 Transformation of FIWARE Smart Industry architecture to the logical view

Thus, to be able to present the mapping between SHOP4CF and FIWARE-SI, the latter is first

transformed to its logical view, as presented in Figure 30. The transformation is done by aggregating

the technology-oriented components into logical components: Context Broker, historical data store, IoT

agents, systems adapters, analytics services, and dashboards. Real-time media processing is omitted, as

(currently) there is no such use case in SHOP4CF.

Figure 31 Logical view of FIWARE Smart Industry

 D3.3 SHOP4CF Architecture

- 46 -

The resulting diagram of the (relevant) logical components of FIWARE-SI is presented in Figure 31.

The arrangement and colors of the components corresponds to Figure 30.

Having that, the mapping between the logical view of FIWARE-SI and the SHOP4CF high-level

middleware (platform) architecture (Figure 11) can be designed, and this is provided in Figure 32. The

mapping depicts how the SHOP4CF architecture implements the FIWARE-SI architecture. Note

however that only a subset of SHOP4CF components cover Analytics services.

Figure 32 Mapping between the logical middleware architecture and FIWARE Smart Industry

In addition, differences regarding the arrows exist between the two diagrams. In FIWARE-SI, Analytics

services connect only to Historical context store, and Dashboards connect only to Analytics services.

In SHOP4CF, both Analytics services and Dashboards can directly connect also to Context Broker to

access the (current) context information. This is considered an extension of FIWARE Smart Industry.

10.1.2 Software aspect

The FIWARE-SI diagram (Figure 4) contains also components that, from the perspective of SHOP4CF,

provide high-level functionality and belong to the UT5 software aspect. Thus, it can be presented how

the six subsystems of the high-level software architecture (Figure 6) can be positioned in the FIWARE-

SI design.

This mapping is presented in Figure 33 and explained below.

Figure 33 Mapping between the logical software architecture and FIWARE Smart Industry

Firstly, the most intuitive part of this mapping is subsystems Analyze Global & Local mapping to the

analytics components of FIWARE-SI (such as Complex Event Processing, Big Data Algorithms, AI

 D3.3 SHOP4CF Architecture

- 47 -

Algorithms, KPIs monitoring; see Figure 4). However, components of the Analyze phase do not need

to rely only on data from the Processing Engines (in SHOP4CF referred to as the historical data store),

as the original arrows depict, but they can also directly access the (current) context information in the

Context Broker (see also Figure 12 for how the Log databases can be implemented). Thus, the

FIWARE-SI architecture is extended on this matter by adding the connection from Analyze to the

Context Broker (i.e. the vertical black arrow at the top).

Secondly, subsystems Design Global & Local can also be seen (at least partially) in the same place of

FIWARE-SI as based on the historical data, the analytics components may provide useful insights for

(re-)design of manufacturing processes. This interpretation corresponds to the two “offline redesign

information” arrows in Figure 7.

Finally, FIWARE-SI does not directly address functionalities that SHOP4CF models in the execution

phase (see Section 6.1). Therefore, subsystems Execute Global & Local extend FIWARE-SI.

Moreover, as some SHOP4CF components can directly connect to robotic systems and 3rd-party

information systems (see Figure 22), such connections are also depicted (the arrows at the bottom).

10.2 Interoperability with the Robot Operating System (ROS)

To highlight the adaptability with robotic agents and applications, the SHOP4CF architecture considers

integration with the Robot Operating System in two different versions, i.e. ROS and ROS2. The ROS

and ROS2 libraries available in the market include robot control, sensors, and different state-of-the-art

applications, such as safety applications for human-robot collaboration or shared robot control. As

a result, it becomes necessary to deploy a communication bridge between FIWARE and ROS/ROS2,

which guarantees that all the robot components can access and share data available in the Context

Broker.

Existing ROS-FIWARE bridges are available for FIWARE NGSI v2 [36] [37]. However, the non-

existent communication node for FIWARE NGSI-LD created the necessity for a new ROS-FIWARE

package, and a system connector for ROS/ROS2 node is under development and testing. It is expected

to be released as open source in the near future. The node will communicate with the Orion-LD Context

Broker, publishing robot data and subscribing to context information provided by the other SHOP4CF

components (e.g., trajectory points, achieved tasks, sensor information, among others). It can be

integrated to either a ROS or ROS2 workspace, and it provides different configuration files for the

Context Broker configuration, the expected data model, and the ROS topics.

The architecture regarding this system adapter to integrate robotic agents with the SHOP4CF

architecture can be seen in Figure 34. The System adapter is a ROS node that receives a configuration

file representing the data models and then publishes/listens to topics accordingly. For now, the system

adapter considers data models in the Task and Device, but it could be extended for other entities through

that configuration file.

 D3.3 SHOP4CF Architecture

- 48 -

Figure 34 Architecture of the system adapter for ROS/ROS2

10.3 Interoperability using International Data Spaces

As outlined in Section 3.2.4, in IDS, different actors (data providers and consumers) can become part

of the Data Space by implementing an IDS connector. The IDS connectors can be enhanced with data

apps from the IDS App Store. These data apps can implement interfaces to third party systems, such as

ERP systems or FIWARE ecosystems.

Figure 35 shows the concept of the FIWARE TRUE Connector [38], which enables trusted data

exchange between FIWARE instances by making use of the IDS ecosystem. In addition, data exchange

between FIWARE systems and non-FIWARE compliant data providers becomes possible with this

architecture. The NGSI-LD data app enables communication with the FIWARE context brokers.

Figure 35 FIWARE TRUE Connector (source: fiware-true-connector.readthedocs.io)

In SHOP4CF, the Context Broker of choice is Orion-LD [32], which implements the NGSI-LD

information model and API [33].

Data exchange using FIWARE TRUE Connector is under validation in Task 3.4. This topic will be

updated in future revisions of this document.

10.4 Interoperability to other system adapters

As shown before, an adapter for robotic agents is being developed. However, due to many different

systems deployed at different sites, as shown from the pilot questionnaires (see Appendix C), a need

for a more general system adapter arose. More precisely, different custom protocols were integrated

 D3.3 SHOP4CF Architecture

- 49 -

(e.g. OPC UA, XML) and doubts on how to correctly interface with the SHOP4CF architecture were

identified.

After this preliminary analysis, in SHOP4CF, the Web of Things (WoT) was identified as suitable for

the task. The Web of Things (WoT) is a web application-layer for IoT. The main idea of WoT is take

advantage of the potential of IoT, making it easier to create applications without the need to master the

disparate variety of IoT technologies and standards.

Figure 36 FIWARE Consumer-Thing interaction (source: www.w3.org)

The WoT-IL is a tool that will port any REST interface based on OpenAPI on the W3C Web of Things

(WoT) standard in order to extend the interoperability through the standard approach. Basically, the

component makes WoT compatible with OpenAPI. In this way, it is possible to take advantage of the

greater power of WoT by allowing describing semantic contexts.

This tool was originally conceived as a vertical component that can be used globally and locally with

the restriction that the functionality you want to be mapped had to be provided through a web-based

API and documented with OpenAPI. Now, the component has started to adapt to other project needs

and the ability to serve as a communication bridge between FIWARE and standards such as OPC UA

or OpenAPI has been added. Therefore, WoT should be used in case translations between data models

are necessary. However, in order to translate into different vocabularies, either adaptive algorithms

should be developed to allow translating one data model into another or translation fields should be

manually defined for the mapping.

 D3.3 SHOP4CF Architecture

- 50 -

11 Extending the framework

The SHOP4CF architecture defines an open framework (a template) that is intended to be easily

extended in the future. Extensions could be designed by the SHOP4CF project but also by third parties,

even so that the project consortium was not involved.

Considered extensions are mainly about functionality of the SHOP4CF framework, but also about

middleware components supporting high-level functionality. Extending functionality may happen by

either adding new software components or extending (upgrading) existing ones. Mapping of such

extension approaches to the architecture design is presented below.

Adding a new software component to SHOP4CF imposes the following design decisions:

1. Define a scenario involving the new functionality.

2. Position the component in the high-level logical software architecture (Figure 6) by assigning

it to the phases and levels.

3. Identify necessary integrations with other components (see the example in Figure 9).

4. Identify middleware components that can support these integrations (see Figure 12).

5. Identify data models that can represent the information to be communicated (see Figure 13).

6. Identify necessary connections to other systems (see Figure 22).

7. Switch from the above logical views to the development view (see Figure 2) and implement

gaps such as necessary interfaces, for instance.

Extending an existing software component requires at least a subset of above design decisions. It

may require adapting previously taken decisions for this component in each of the aforementioned steps.

Adding middleware components is aimed at extending functionality of the internal services that

middleware provides to functional software components. Such functionality may be for instance

supporting exchange of streaming data. It may be an intermediate step towards functional extensions

discussed above.

Adding a middleware component requires positioning of such a component in the middleware

architecture (Figure 11) and defining how software components can interact with this component (see

Figure 22 and Section 9.2). It might also require defining some data constraints (as for instance in

Section 8.4).

 D3.3 SHOP4CF Architecture

- 51 -

12 Conclusions

This document defined the SHOP4CF framework architecture that ensures coherence and

interoperability of the SHOP4CF components. Coherence of the components is addressed mainly by

positioning of components in the logical software architecture and arranging the relationships between

them (Section 6). Interoperability is addressed mainly with the platform architectures (Section 7 and 9)

and the data architecture (Section 8) that both facilitate and standardize communication among the

components.

Cross-dependencies between the various views where emphasized, namely how the platform

components support the functional software components but also how the data architecture maps to

relevant parts of the software and platform architectures.

Further design decisions may be taken and further architecture details may be specified as the project

advances. Concrete areas for such decisions were highlighted, and these are for instance SHOP4CF

components with their specific functionalities, more specific data models, new middleware components,

new types of software-middleware connections. The next revision of this document will report changes

introduced in the meantime.

The numerous logical architecture views from this document are to be taken forward by software

developers and system integrators, so they can make design decisions based on their specific

perspectives (i.e. corresponding to the K4+1 development and process views).

 D3.3 SHOP4CF Architecture

- 52 -

Bibliography

[1] P. Bouklis and A. Garbi, "Deliverable D5.1: Definition of the deployment scenarios,"

SHOP4CF, 2020.

[2] P. Grefen, "Results Architecture Workshop (internal report)," SHOP4CF, 2020.

[3] P. Grefen, "Business Information System Architecture (Version Spring 2015)," Eindhoven

University of Technology, 2015.

[4] P. Kruchten, "Architectural Blueprints – The 4+1 View Model of Software Architecture," IEEE

Software, vol. 12(6), pp. 42-50, 1995.

[5] M. West, Developing High Quality Data Models, 2010.

[6] T. Kuula, S. Aromaa and P. Heikkilä, "Deliverable D2.1: Industrial requirements report,"

SHOP4CF, 2020.

[7] Z. Domagala, "Deliverable D3.1: Functional requirements specification," SHOP4CF, 2020.

[8] K. Traganos, I. Vanderfeesten, Z. Domagala, G. L. Mallman and P. Grefen, "Component

Analysis Report, Task 3.2 (internal report)," SHOP4CF, 2020.

[9] "Communication in SHOP4CF," 2020. [Online]. Available:

https://shop4cf.github.io/communication-docs/. [Accessed 1 December 2020].

[10] J. Zhou, Y. Zhou, B. Wang and J. Zang, "Human–cyber–physical systems (HCPSs) in the

context of new-Generation intelligent manufacturing," Engineering, vol. 5, no. 4, pp. 624-636,

2019.

[11] S. Angelov, P. Grefen and D. Greefhorst, "A framework for analysis and design of software

reference architectures," Information and Software Technology, vol. 54, no. 4, pp. 417-431,

2012.

[12] M. Moghaddam, M. N. Cadavid, C. R. Kenley and A. V. Deshmukh, "Reference architectures

for smart manufacturing: A critical review.," Journal of Manufacturing Systems, no. 49, p. 215–

225, 2018.

[13] J. Lee, B. Bagheri and H. Kao, "A cyber-physical systems architecture for industry 4.0-based

manufacturing systems," Manufacturing Letters, vol. 3, pp. 18-23, 2015.

[14] ISA, "ANSI/ISA 95 - Enterprise-Control System Integration. Multi-part Standard," International

Society of Automation, North Carolina, USA, 2000.

 D3.3 SHOP4CF Architecture

- 53 -

[15] ISA, "ISA95, Enterprise-Control System Integration," [Online]. Available:

https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95.

[Accessed 14 December 2020].

[16] ISO, "IEC 62264:2013 Enterprise-control system integration, multi-part standard," International

Organization for Standardization, Geneva, Switzerland, 2013.

[17] T. Bauernhansl, "Die Vierte Industrielle Revolution - Der Weg in ein wertschaffendes

Produktionsparadigma," in Handbuch Industrie 4.0 Bd.4: Allgemeine Grundlagen, Berlin,

Heidelberg, Springer Berlin Heidelberg, 2017, pp. 1-31.

[18] Deutsches Institut für Normung, "DIN SPEC 91345:2016 - Referenzarchitekturmodell Industrie

4.0 (RAMI4.0)," Berlin, 2016.

[19] "Smart Industry - FIWARE Open Source Platform for Smart Industry," [Online]. Available:

https://www.fiware.org/community/smart-industry/. [Accessed 1 December 2020].

[20] B. Otto, "Reference Architecture Model for the Industrial Data Space," 2017.

[21] “IDS Reference Architecture Model,” [Online]. Available:

https://internationaldataspaces.org/use/reference-architecture/. [Accessed 1 December 2021].

[22] “GAIA-X,” [Online]. Available: https://www.data-

infrastructure.eu/GAIAX/Navigation/EN/Home/home.html. [Accessed 1 December 2021].

[23] P. Grefen and G. Boultadakis, Designing an Integrated System for Smart Industry: The

Development of the HORSE Architecture, Independently Published, 2021.

[24] R. Zanetti, "OPIL architecture," L4MS Project, 2018.

[25] M. Zimniewicz, "Data flow in pilot scenarios (internal report)," SHOP4CF, 2020.

[26] "FIWARE - Data models," [Online]. Available: https://fiware-datamodels.readthedocs.io/.

[Accessed 1 December 2020].

[27] "OS-level virtualization - Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/OS-

level_virtualization. [Accessed 1 December 2020].

[28] "Docker," [Online]. Available: https://www.docker.com/. [Accessed 1 December 2020].

[29] S. Krakowiak, "What's middleware?," [Online]. Available:

http://www.middleware.org/whatis.html. [Accessed 1 December 2020].

[30] "FIWARE - Developers Catalogue," [Online]. Available:

https://www.fiware.org/developers/catalogue/. [Accessed 1 December 2020].

[31] V. Araujo, K. Mitra, S. Saguna and C. Åhlund, "Performance evaluation of FIWARE: A cloud-

based IoT platform for smart cities," Journal of Parallel and Distributed Computing, no. 132,

2019.

 D3.3 SHOP4CF Architecture

- 54 -

[32] “Orion-LD,” [Online]. Available: https://github.com/FIWARE/context.Orion-LD. [Accessed 1

December 2021].

[33] “NGSI-LD,” [Online]. Available: https://en.wikipedia.org/wiki/NGSI-LD. [Accessed 1

December 2021].

[34] "Smart Data Models," [Online]. Available: https://github.com/smart-data-models/. [Accessed 1

December 2021].

[35] "FIWARE-NGSI v2 Specification," 2018. [Online]. Available:

https://telefonicaid.github.io/fiware-orion/api/v2/stable/. [Accessed 1 December 2020].

[36] “eProsima,” [Online]. Available: https://github.com/eProsima/FIWARE-SH. [Accessed 1

December 2021].

[37] “FIROS,” [Online]. Available: https://firos.readthedocs.io/en/latest/index.html. [Accessed 1

December 2021].

[38] “FIWARE TRUE Connector,” [Online]. Available: https://github.com/Engineering-Research-

and-Development/fiware-true-connector/. [Accessed 1 December 2021].

[39] P. Grefen, I. Vanderfeesten and G. Boultadakis, "Architecture design of the HORSE hybrid

manufacturing process control system," 2016.

 D3.3 SHOP4CF Architecture

- 55 -

Appendix A Interfaces in the high-level logical

software architecture

The information exchanged between the six subsystems and the databases of the high-level logical

software architecture from Figure 7 is detailed here.

Figure 37 High-level logical software architecture with numbered interfaces

Figure 37 repeats that previous view and contains the identifiers of interfaces. All the interfaces together

with high-level categories of information carried between subsystems are listed in Table 6.

Table 6 Interfaces in the high-level logical software architecture

Interface Direction Information Remarks

1 DG SpG Process models (sequence of tasks)

Agent models (incl. capabilities)

Allocation models (role models)

Shop Floor Models

SpG DG (as above)

2 SpG EG (as above)

3 SpG DL Capability models

Shop Floor Models

4 SpL DG

High-level (black-box) characteristics of task definitions

High-level (black-box) characteristics of work cell definitions

5 DL SpL

Task and step definitions

Safety and risk analysis results

SpL DL Task and step definitions

 D3.3 SHOP4CF Architecture

- 56 -

6 SpL EL Contents of task (work instructions/scripts)

Safety and risk analysis results

7 DL

Autonomous agent

Contents of task (work instructions/scripts)

Trajectories/Movements

 AA DL Design feedback

8 EL AA Contents of task (work instructions/scripts)

AA EL Task control confirmations

Task statuses

9 EL Human

worker

Contents of task (work instructions)

10 EG EL Task control commands

Product definitions

EL EG Task control confirmations

Task statuses

Agents statuses (availability/positioning)

Alerts

Measurements

 HA EL Task control confirmations

Task statuses

11 EG LgG (Global) Execution data/logs

(Global) Event data/logs

12 LgG AG (as above)

13 EL LogL (Local) Execution data/logs

(Local) Event data/logs

Factory topography

Agents movements

Video streams/Images

Measurements

14 LogL AL (as above)

15 EL AL (Local) Execution data/logs

(Local) Event data/logs

Synchronous

interface

16 AL EL (Local) Analyzed execution/event data Synchronous

interface

17 AG EG (Global) Analyzed execution/event data

(Global) Simulation data

Synchronous

interface

18 AG RepG (Global) Analyzed execution/event data

19 RepG DG (Global) Analyzed execution/event data for redesign

20 AG AL (Global) Analyzed execution/event data for local analysis

 AL AG (Local) Analyzed execution/event data for global analysis

21 AL RepL (Local) Analyzed execution/event data

22 RepL DL (Local) Analyzed execution/event data for redesign

 D3.3 SHOP4CF Architecture

- 57 -

Appendix B FIWARE data representation

This Appendix is the K4+1 development view on the UT5 data aspect. It provides the technical

representation for the SHOP4CF data models defined in Section 8. Reviewing Section 8 may be

necessary to understand the technical representation better.

B.1. NGSI format

Data in FIWARE is represented in the FIWARE NGSI format2. There are two leading versions of the

format: NGSI v2 and NGSI-LD. The SHOP4CF consortium chose NGSI-LD.

In addition, some additional conventions are defined in the following section.

B.2. Conventions

Beyond the strict rules defined by FIWARE NGSI, SHOP4CF defines the following convention.

An entity identifier should be a URN3, built as “urn:ngsi-ld:<entity-type>:<factory-id>:<entity-id>”,

for instance: “urn:ngsi-ld:Device:company-xyz:sensor-abc-12345”.

The <factory-id> element is introduced to ensure easy adoption of hypothetical future scenarios of smart

supply chains, i.e. exchanging data via FIWARE across factories.

B.3. Examples

Example FIWARE entities are provided and kept as online resource to ease its maintenance and

contributions from the community. This is available under the following address:

https://shop4cf.github.io/communication-docs/data-models/

2 https://fiware-datamodels.readthedocs.io/en/latest/howto/index.html
3 https://en.wikipedia.org/wiki/Uniform_Resource_Name

https://shop4cf.github.io/communication-docs/data-models/
https://fiware-datamodels.readthedocs.io/en/latest/howto/index.html
https://en.wikipedia.org/wiki/Uniform_Resource_Name

 D3.3 SHOP4CF Architecture

- 58 -

Appendix C Pilot questionnaires on MES

C.1 Survey and results

To understand the needs of the pilots and needs for interoperability of the SHOP4CF architecture with

existing infrastructures, an open-end question survey was conducted. The survey was integrating

questions regarding both general Manufacturing Execution System (MES) information and capabilities

of connection as attached below.

Detailed results are not here reported due to the confidential data communicated by the partners.

However general anonymized results of the four partners are here reported and summarized in Table 7.

Two main points were obtained from the user survey. More than half of the participants were open for

data sharing and MES had supporting functionalities for exporting data.

Table 7 High-level results for the pilot questionnaires

 Yes No

Open to data sharing 75% 25%

Established supplier connection 75% 25%

MES supports APIs 75% 25%

Three KPIs were extracted from the questions. Percentage of the pilots supporting or not the three KPIs

are reported. However, each MES had different interfaces. Therefore, tuning on the exchanged data

needs to be properly customized.

C.2 Questionnaire questions

Company background on MES

1. What MES system is used in your company?

2. Does your MES system supports multi-language?

3. What type of functionalities does your MES support?

 [] Operations/Detailed Sequencing

 [] Resource Allocation and Status

 [] Document Control

 [] Performance Analysis Process management

 [] Data collection & acquisition

 [] Maintenance management (they use another tool for the Maintenance)

 [] Quality management (in line quality management)

 [] Product tracking and genealogy

 [] Labour management (it was added manually as long it was not a default)

 [] Dispatching production units (Routing based)

 D3.3 SHOP4CF Architecture

- 59 -

4. Can you please order the previous functions to display how your MES focus on them? Please

order them from the lowest important to the highest important.

 [] Operations/Detailed Sequencing

 [] Resource Allocation and Status

 [] Document Control

 [] Performance Analysis Process management

 [] Data collection & acquisition

 [] Maintenance management

 [] Quality management

 [] Product tracking and genealogy

 [] Labour management

 [] Dispatching production units

MES information for ISA-95

5. Are you aware if your MES system is using ISA-95? (skip this question if you replied NO to

4)

6. How are machines defined in the MES system? (i.e. Which name is used?) If they are not

defined write NO

7. How are human operators defined in the MES system? (i.e. Which name is used?) If they are

not defined write NO

8. How are products and sub-products defined in the MES system? (i.e. Which name is used?) If

they are not defined write NO

9. How are tools defined in the MES system? (i.e. Which name is used?) If they are not defined

write NO

Usage of the MES system

10. How machines communicate to the MES system and vice versa? (e.g .file transfer via USB,

file transfer via TCP, etc..)

11. How humans communicate to the MES system and vice versa? (e.g. file transfer via USB, file

transfer via TCP, HMI, etc..)

12. How tools communicate to the MES system and vice versa? (e.g. file transfer via USB, file

transfer via TCP, etc..)

13. How products’ status and sub-products’ status communicate to the MES system and vice

versa? (e.g. sensor connected, RFID etc...)

14. How do you insert an order in the system (e.g. produce 100 washing machines)?

15. How the order tracking is done (e.g. status)? (i.e. Who or what marks the order as done?)

16. If you change your physical layout of your factory (new line/new machine) how this is

reflected in the MES?

17. How is the communication between MES and ERP done?

18. How much paper-based documentation is used at the factory? Is there any process for

including paper-based documentation in the MES/ERP system?

19. Does your MES system supports APIs or Interfaces to integrate communication with other

components? If yes please specify which one (e.g. MQTT, OPC UA)? If not, which other

methods can be used to retrieve data from MES?

20. How does the MES handle alerts/exceptions?

MES information for lifecycle and layer management

21. Do you track the life (“vita”) of an asset (e.g. production, usage, maintenance)? If yes how

this is reflected in your MES

 D3.3 SHOP4CF Architecture

- 60 -

22. How is the connection between suppliers of some sub-products integrated in the MES

system? (e.g. if you need to get an electric motor from a supplier how this is integrated and

tracked?) If you do not share information skip to 27.

23. If you do no share information with suppliers, why you do not do that? Are there concerns on

data integrity or other?

24. If there could be a way to easily transfer/receive the data in a secured way from suppliers

would you be interested on using the technology?

25. Do you track the position of your assets (i.e. human, machine, tool, product) with a special

hierarchy (i.e. station, control device, site, area, workcell)? If yes how this is reflected in your

MES?

26. Do you use the concept of Asset Administration Shell in your MES or IT system? If yes, how

is it implemented?

SHOP4CF architecture

27. Can you MES communicate directly with FIWARE (no translation necessary)? If yes, how is

it implemented?

28. What is the high-level data model of the concepts dealt by the MES and how are these

realized on the exchanged messages with other systems (through the interfaces)?

	Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose
	1.2 Target audience
	1.3 Document lifetime
	1.4 Structure of this document

	2 Architectural standards
	2.1 The Updated Truijens 5 Aspect Framework (UT5)
	2.2 The Kruchten 4+1 architecture framework (K4+1)
	2.3 Data modeling
	2.4 Architecture specification techniques

	3 Requirements for the Architecture
	3.1 Project resources
	3.1.1 Scenarios
	3.1.2 Component analysis

	3.2 Reference architectures
	3.2.1 ISA-95
	3.2.2 RAMI 4.0
	3.2.3 FIWARE Smart Industry
	3.2.4 International Data Spaces
	3.2.5 Architectures of prior research projects

	4 Methodology applied to SHOP4CF
	4.1 The UT5 framework applied to SHOP4CF
	4.2 The K4+1 framework applied to SHOP4CF
	4.3 Data modeling approach applied to SHOP4CF

	5 Overview of SHOP4CF components
	6 High-level logical software architecture
	6.1 Top-level logical software architecture
	6.2 High-level interfaces
	6.3 Positioning of SHOP4CF components
	6.4 Mapping to scenarios

	7 High-level logical platform architecture
	7.1 Top-level logical platform architecture
	7.2 Overview of FIWARE middleware
	7.3 High-level middleware architecture
	7.4 Mapping to software architecture

	8 High-level logical data architecture
	8.1 Top-level logical data architecture
	8.2 Design data models
	8.2.1 Locations
	8.2.2 Work definitions
	8.2.3 Resource Specifications

	8.3 Execution data models
	8.3.1 Resources
	8.3.2 Tasks
	8.3.3 Processes
	8.3.4 Alerts

	8.4 Mapping to middleware architecture
	8.5 Mapping to scenarios and middleware architecture
	8.6 Mapping to the ISA-95 standard

	9 Medium-level logical platform architecture
	9.1 Mapping to software architecture
	9.2 Characteristics of interoperability classes
	9.3 Extensive example of interoperability

	10 Interoperability of the architecture
	10.1 Relation to FIWARE Smart Industry
	10.1.1 Platform aspect
	10.1.2 Software aspect

	10.2 Interoperability with the Robot Operating System (ROS)
	10.3 Interoperability using International Data Spaces
	10.4 Interoperability to other system adapters

	11 Extending the framework
	12 Conclusions
	Bibliography
	Appendix A Interfaces in the high-level logical software architecture
	Appendix B FIWARE data representation
	B.1. NGSI format
	B.2. Conventions
	B.3. Examples

	Appendix C Pilot questionnaires on MES
	C.1 Survey and results
	C.2 Questionnaire questions

